Комбинаторные алгоритмы для программистов

         

Множество самых разнообразных задач естественно


Множество самых разнообразных задач естественно формулируется в терминах графов. Так, например, могут быть сформулированы задачи составления расписаний в исследовании операций, анализа сетей в электротехнике, установления структуры молекул в органической химии, сегментации программ в программировании, анализа цепей Маркова в теории вероятностей. В задачах, возникающих в реальной жизни, соответствующие графы часто оказываются так велики, что их анализ неосуществим без ЭВМ. Таким образом, решение прикладных задач с использованием теории графов возможно в той мере, в какой возможна обработка больших графов на ЭВМ, и поэтому эффективные алгоритмы решения задач теории графов имеют большое практическое значение. В 16 и 17 лекциях мы излагаем несколько эффективных алгоритмов на графах и используем их для демонстрации некоторой общей техники решения задач на графах с помощью ЭВМ.
Конечный граф
состоит из конечного множества вершин
и конечного множества ребер
. Каждому ребру соответствует пара вершин: если ребро
соответствует ребру
, то говорят, что
инцидентно вершинам
и
. Граф
изображается следующим образом: каждая вершина представляется точкой и каждое ребро представляется отрезком линии, соединяющим его концевые вершины. Граф называется ориентированным, если пара вершин
, соответствующая каждому ребру, упорядочена. В таком случае говорят, что ребро
ориентированно из вершины
в вершину
, а направление обозначается стрелкой на ребре. Мы будем называть ориентированные графы орграфами. В неориентированном графе концевые вершины каждого ребра не упорядочены, и ребра не имеют направления. Ребро называется петлей, если оно начинается и кончается в одной и той же вершине. Говорят, что два ребра параллельны, если они имеют одну и ту же пару концевых вершин (и если они имеют одинаковую ориентацию в случая ориентированного графа). Граф называется простым, если он не имеет ни петель, ни параллельных ребер. Если не указывается противное, будем считать, что рассматриваемые графы являются простыми. Всюду в 16 и 17 лекции будем использовать символы
и
для обозначения соответственно числа вершин и числа ребер в графе
.

Содержание раздела