Комбинаторные алгоритмы для программистов

         

Решето Эратосфена


Одной из самых больших загадок математики является расположение простых чисел в ряду всех натуральных чисел. Иногда два простых числа идут через одно, (например, 17 и 19, 29 и 31), а иногда подряд идет миллион составных чисел. Сейчас ученые знают уже довольно много о том, сколько простых чисел содержится среди

первых натуральных чисел. В этих подсчетах весьма полезным оказался метод, восходящий еще к древнегреческому ученому Эратосфену. Он жил в третьем веке до новой эры в Александрии.

Эратосфен занимался самыми различными вопросами - ему принадлежат интересные исследования в области математики, астрономии и других наук. Впрочем, такая разносторонность привела его к некоторой поверхностности. Современники несколько иронически называли Эратосфена "во всем второй": второй математик после Евклида, второй астроном после Гиппарха и т.д.

В математике Эратосфена интересовал как раз вопрос о том, как найти все простые числа среди натуральных чисел от 1 до

. (Эратосфен считал 1 простым числом. Сейчас математики считают 1 числом особого вида, которое не относится ни к простым, ни к составным числам.) Он придумал для этого следующий способ. Сначала вычеркивают все числа, делящиеся на 2 (исключая само число 2). Потом берут первое из оставшихся чисел (а именно 3). Ясно, что это число - простое. Вычеркивают все идущие после него числа, делящиеся на 3. Первым оставшимся числом будет 5. Вычеркивают все идущие после него числа, делящиеся на 5, и т.д. Числа, которые уцелеют после всех вычеркиваний, и являются простыми. Так как во времена Эратосфена писали на восковых табличках и не вычеркивали, а "выкалывали" цифры, то табличка после описанного процесса напоминала решето. Поэтому метод Эратосфена для нахождения простых чисел получил название "решето Эратосфена".

Подсчитаем, сколько останется чисел в первой сотне, если мы вычеркнем по методу Эратосфена числа, делящиеся на 2, 3 и 5. Иными словами, поставим такой вопрос: сколько чисел в первой сотне не делится ни на одно из чисел 2, 3, 5? Эта задача решается по формуле включения и исключения.


Обозначим через
свойство числа делиться на 2, через
- свойство делимости на 3 и через
- свойство делимости на 5. Тогда


означает, что число делится на 6,
означает, что оно делится на 10, и
- оно делится на 15. Наконец,
означает, что число делится на 30. Надо найти, сколько чисел от 1 до 100 не делится ни на 2, ни на 3, ни на 5, то есть не обладает ни одним из свойств
,
,
. По формуле 6.3 имеем


Но чтобы найти, сколько чисел от 1 до
делится на
, надо разделить
на
и взять целую часть получившегося частного. Поэтому





и значит,



Таким образом, 32 числа от 1 до 100 не делятся ни на 2, ни на 3, ни на 5. Эти числа и уцелеют после первых трех шагов процесса Эратосфена. Кроме них останутся сами числа 2, 3 и 5. Всего останется 35 чисел.

А из первой тысячи после первых трех шагов процесса Эратосфена останется 335 чисел. Это следует из того, что в этом случае





Содержание раздела